如图,三棱锥中,底面于,,,点是的中点.(1)求证:侧面平面;(2)若异面直线与所成的角为,且,求二面角的大小.
当为正整数时,区间,表示函数在上函数值取整数值的个数,当时,记.当,表示把“四舍五入”到个位的近似值,如当为正整数时,表示满足的正整数的个数.(1)判断在区间的单调性;(2)求;(3)当为正整数时,集合中所有元素之和为,记求证:
已知函数,(1)求;(2)令,求证:
已知,(1)若的取值范围;(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.
设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有. 则称直线l为曲线S的“上夹线”.(1) 类比“上夹线”的定义,给出“下夹线”的定义;(2) 已知函数取得极小值,求a,b的值;(3) 证明:直线是(2)中曲线的“上夹线”。
某养殖厂规定:饲料用完的第二天方可购买饲料,并且每批饲料可供n(n∈Z*)天使用.已知该厂每天需要饲料200公斤,每公斤饲料的价格为1.8元,饲料的保管费为平均每公斤每天0.03元(当天用掉的饲料不计保管费用),购买饲料每次支付运费300元.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最小;(2)若提供饲料的公司规定,当一次购买饲料不少5吨时其价格可享受八五折优惠(即原价的85%).问该厂是否考虑利用此优惠条件,请说明理由.