经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.(1)写出年利润(万元)关于年产量(万件)的函数解析式;(注:年利润=年销售收入固定成本流动成本)(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?
已知定义在上的函数f(x)同时满足下列三个条件: ①f(3)=﹣1;②对任意x、y∈都有f(xy)=f(x)+f(y);③x>1时,f(x)<0. (1)求f(9)、的值; (2)证明:函数f(x)在上为减函数; (3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
已知函数f(x)=|x﹣1|+|x+1|(x∈R) (1)证明:函数f(x)是偶函数; (2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域; (3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
已知集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∩B={﹣3},A∪B={﹣3,1,4},求实数a,b,c的值.
已知定义域为的函数是奇函数。 (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。 (Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与时间的函数关系式; (Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价各种植成本的单位:元/102㎏,时间单位:天)