(1)解二元一次方程组:(2)试运用解二元一次方程组的思想方法,解三元一次方程组:
今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;(3)小英家3月份交水费39元,她家应用水多少吨?
如图,有一块圆形铁皮,BC是⊙O的直径,,在此圆形铁皮中剪下一个扇形(阴影部分).(1)当⊙O的半径为2时,求这个扇形(阴影部分)的面积(结果保留);(2)当⊙O的半径为R(R>0)时,在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.
“江宁义乌小商品城”销售某种小商品,平均每天可销售30件,每件盈利50元. 为了尽快减少库存,销售商决定采取降价措施. 经调查发现,每件商品每降价1元,平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:(1)日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,销售商日盈利可达到2100元?
下图是一座人行天桥的示意图,天桥的高CB为10米,坡面CA的坡角为30°.为了方便行人推车过桥,市政部门决定降低坡度,使新坡面CD的坡角为18°,若新桥脚前需留4米的人行道,问离原坡脚15米的花坛是否需要拆除?请说明理由.(参考数据:sinl8°≈0.3090,cosl8°≈0.9511,tanl8°≈0.3249,1.414,≈1.732)
在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1、2、3、4.小明先从口袋里随机取出一张纸牌,记下数字为x;再由小华从剩下的3张纸牌中随机取出一张纸牌,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一张纸牌所确定的点(x,y)落在反比例函数的图象上的概率.