在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】如图1,当点H与点C重合时,可得FG=FD.【探究】如图2,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.【应用】在图2中,当AB=5,BE=3时,利用探究结论,求FG的长.
如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于点(8,8),直线与轴的交点为C,与y轴的交点为B.(1)求这个二次函数的解析式与B点坐标;(2)为线段上的一个动点(点与不重合),过作轴的垂线与这个二次函数的图象交于D点,与轴交于点E.设线段PD的长为,点的横坐标为t,求与t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,在线段上是否存在点,使得以点P、D、B为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡政策的实施,商场决定采取适当的降价措施。调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台。(1)假设每台冰箱降价x元,商场每天销售这种冰箱y台,请写出y与x的函数关系式(不要求写自变量的范围)(2)若每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数表达式(不要求写自变量的取值范围);(3)商场要想在这种冰箱销售中每天赢利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(4)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)若EC=3,BD=,求⊙O的直径AC的长.
由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.(1)求4月初猪肉价格下调后每斤多少元?(2)求5、6月份猪肉价格的月平均增长率.
张华同学在学校某建筑物的C点处测得旗杆顶部A点的仰角为300,旗杆底部B点的俯角为450.若旗杆底部B点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A离地面的高度为多少米?(精确到0.1米,)