在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)若EC=3,BD=,求⊙O的直径AC的长.
(本小题满分8分)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元. (1)求篮球和足球的单价; (2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案? (3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.
(本小题满分7分)先化简,再求值:,其中满足
(本小题满分12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点. (1)如图1,当点C的横坐标为1时,求直线BC的解析式; (2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由; (3)如图2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
(本小题满分14分)已知O为坐标原点,抛物线与轴相交于点,.与轴交于点C,且O,C两点之间的距离为3,,,点A,C在直线上. (1)求点C的坐标; (2)当随着的增大而增大时,求自变量的取值范围; (3)将抛物线向左平移个单位,记平移后随着的增大而增大的部分为P,直线向下平移n个单位,当平移后的直线与P有公共点时,求的最小值.
(本小题满分14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形. (1)试探究筝形对角线之间的位置关系,并证明你的结论; (2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8. ①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由; ②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.