若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知.求和的值.
已知圆,设点B,C是直线上的两点,它们的横坐标分别是,点P在线段BC上,过P点作圆M的切线PA,切点为A (1)若,求直线的方程; (2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值
如图,四棱锥中,∥,,侧面为等边三角形 (1)证明: (2)求AB与平面SBC所成角的正弦值
已知:以点C(t,)(t∈R,t≠0)为圆心的圆与轴交于点O,A,与y轴交于点O,B,其中O为原点 (1)求证:△OAB的面积为定值; (2)设直线y=–2x+4与圆C交于点M,N,若OM=ON,求圆C的方程
已知圆C:=0 (1)已知不过原点的直线与圆C相切,且在轴,轴上的截距相等,求直线的方程; (2)求经过原点且被圆C截得的线段长为2的直线方程