如图,已知四棱台上,下底面分别是边长为3和6的正方形.且底面,点分别在棱上.(1)点是的中点,证明:;(2)若平面,二面角的正切值为,求四面体的体积.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.(文)某种型号汽车的四个轮胎半径相同,均为,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑形成顶角为的等腰三角形,且,如果地面上有()高的积水(此时坑内全是水,其它因素忽略不计).(1)当轮胎与、同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为;(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求的最大值.(精确到1cm).
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数=.(1)判断函数的奇偶性,并证明;(2)求的反函数,并求使得函数有零点的实数的取值范围.
(本题满分12分) 已知集合,实数使得集合满足,求的取值范围.
如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.(2)已知具有“性质”,且当时,求在上的最大值.(3)设函数具有“性质”,且当时,.若与交点个数为2013个,求的值.
数列的前项和记为,且满足.(1)求数列的通项公式;(2)求和;(3)设有项的数列是连续的正整数数列,并且满足:.问数列最多有几项?并求这些项的和.