计算(1) (2)
如图,已知抛物线与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=cm,求DC的长(结果保留根号).
某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?
如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.
根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.(1)求测速点M到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:≈1.41,≈1.73,≈2.24)