设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)证明:f(x)≤2x-2.
.给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程及其“伴随圆”方程;(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:。
.已知函数.⑴若,求曲线在点处的切线方程;⑵若函数在其定义域内为增函数,求正实数的取值范围;
调查某初中1000名学生的肥胖情况,得下表:
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。(1)求的值;(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?(3)已知,,肥胖学生中男生不少于女生的概率。
(本小题满分12分)下图是一几何体的直观图、主视图、俯视图、左视图.(1)若为的中点,求证:面; (2)求A到面PEC的距离;
.(本小题满分12分)如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点,观察对岸的点,测得 ,且米.(1)求;(2)求该河段的宽度.