(本小题满分14分)已知函数。(1)求函数的单调区间与最值;(2)若方程在区间内有两个不相等的实根,求实数的取值范围; (其中e为自然对数的底数)(3)如果函数的图像与x轴交于两点,且,求证:(其中,是的导函数,正常数满足)
已知函数f(x)=ax+ (x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。(1)求证:MN∥平面PAD。(2)求证:MNCD.(3)若PD与平面ABCD所成的角为450,求证:MN平面PCD.
当k为何值时,直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0,(1).相交(2).垂直(3).平行(4).重合。
(本题满分14分)设,分别为椭圆的左右焦点,过的直线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为.(Ⅰ)求椭圆的焦距;(Ⅱ)如果,求椭圆的方程.
(本题满分12分)求使函数的图像全在轴上方成立的充要条件.