在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。(1)求证:MN∥平面PAD。(2)求证:MNCD.(3)若PD与平面ABCD所成的角为450,求证:MN平面PCD.
已知三角形的两顶点为,它的周长为,求顶点轨迹方程.
设P,Q,R,S四人分比获得1——4等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖。问P,Q,R,S分别获得几等奖?
写出下列各命题的否命题和命题的否定:(1),若,则;(2)若,则;(3)若,则;(4)若,则是等比数列。
写出命题“所有等比数列的前项和是(是公比)”的否定,并判断原命题否定的真假。
判断下列命题的真假,并说明理由:(1),都有;(2),使;(3),都有;(4),使。