已知双曲线,点、分别为双曲线的左、右焦点,动点在轴上方.(1)若点的坐标为是双曲线的一条渐近线上的点,求以、为焦点且经过点的椭圆的方程;(2)若∠,求△的外接圆的方程;(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.
(本小题满分13分)已知函数求:(1)的最小正周期;(2)的单调递增区间;(3)在上的最值.
已知数列是等比数列,首项(Ⅰ)求数列的通项公式(Ⅱ)若数列是等差数列,且,求数列的通项公式及前项的和
(本小题满分12分) 四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°,AB=2,BC=,SA=SB=。(1)证明:SA⊥BC;(2)求直线SD与平面SAB所成角的大小;(3)求二面角D-SA-B的大小.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(1)求证:EF∥平面PAD;(2)求证:平面PAB⊥平面PCD.
(本小题满分12分)求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行。