(本小题满分12分)某种商品的生产成本为50元/件,出厂价为60元/件.厂家为了鼓励销售商多订购,决定当一次性订购超过100件时,每多订购一件,所订购全部商品的出厂价就降低0.01元.根据市场调查,销售商一次订购不会超过600件.(1)设销售商一次订购x件商品时的出厂价为f(x),请写出f(x)的表达式;(2)当销售商一次订购多少件商品时,厂家获得的利润最大?最大利润是多少?
已知函数f(x)=x(x+a)-lnx,其中a为常数.(1)当a=-1时,求f(x)的极值;(2)若f(x)是区间内的单调函数,求实数a的取值范围;(3)过坐标原点可以作几条直线与曲线y=f(x)相切?请说明理由.
已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点.(1)当时,求直线AB的方程;(2)设点,求证:当实数变化时,恒为定值.
(本小题12分)设等差数列{an}的前n项和为Sn,已知S3=a6,S8=S5+21.(1)求Sn的表达式;(2)求证:.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,E为BC的中点. (1)求证:AD⊥PE; (2)设F是PD的中点,求证:CF∥平面PAE.
盒子中装有形状、大小完全相同的五张卡片,分别标有数字1,2,3,4,5.现从中任意抽出三张.(1)求三张卡片所标数字之和能被3整除的概率;(2)求三张卡片所标数字之积为偶数的条件下,三张卡片数字之和为奇数的概率.