某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;
袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球. (1)共有多少种不同结果? (2)取出的3球中有2个白球,1个黑球的结果有几个? (3)取出的3球中至少有2个白球的结果有几个? (4)计算第(2)、(3)小题表示的事件的概率
育新中学的高二一班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组. (1)求被抽到的课外兴趣小组中男、女同学的人数; (2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名中恰有一名女同学的概率; (3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由
)为了了解中学生的身高情况,对某校中学生同年龄的若干名女生的身高进行了测量,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6(单位:cm) (1)参加这次测试的学生人数是多少? (2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少? (3)如果本次测试身高在154.5 cm以上的为良好,试估计该校学生身高良好率是多少?
某投资商准备在某市投资甲、乙、丙三个不同的项目,这三个项目投资是否成功相互独立,预测结果如表:
(1)求恰有一个项目投资成功的概率; (2)求至少有一个项目投资成功的概率
已知函数f(x)=为奇函数,f(1)<f(3), 且不等式0≤f(x)≤的解集是{x|-2≤x≤-1或2≤x≤4}. (1)求a,b,c的值; (2)是否存在实数m使不等式f(-2+sinθ)<-m2+对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.