(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当.(1)证明:f(x)在R上是奇函数;(2)当时,求f(x)的解析式。
选修4-4:坐标系与参数方程已知直线l:(t为参数)恒经过椭圆C:(j为参数)的右焦点F. (Ⅰ)求m的值; (Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.
选修4-1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点. (Ⅰ)求证:∠ACE=∠BCD; (Ⅱ)若BE=9,CD=1,求BC的长.
已知函数,,是常数. (1)求函数的图象在点处的切线方程; (2)若函数图象上的点都在第一象限,试求常数的取值范围; (3)证明:,存在,使.
如图,在斜三棱柱中,是的中点,⊥平面,,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
已知数列的前项和为,. (1)求数列的通项公式; (2)设,=,记数列的前项和.若对,恒成立,求实数的取值范围.