已知数列的前项和为,且.数列为等比数列,且,. (1)求数列,的通项公式;(2)若数列满足,求数列的前项和.
在公比为的等比数列中,与的等差中项是.(Ⅰ)求的值;(Ⅱ)若函数,,的一部分图像如图所示,,为图像上的两点,设,其中与坐标原点重合,,求的值.
设数列 是集合中的数从小到大排列而成,即a1=3,a2=5,a3=6,a4=9,a5=10,…。现将各数按照上小下大、左小右大的原则排成如下三角形表:1、.写出这个三角形的第四行和第五行的数;2、求a100;3、设{}是集合 中的数从小到大排列而成,已知=1160,求k的值.
已知圆,直线。(Ⅰ)求证:对,直线与圆C总有两个不同交点;(Ⅱ)设与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;(Ⅲ)若定点P(1,1)分弦AB为,求此时直线的方程
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式;(2) 用数学归纳法证明所得的结论。