设等差数列的首项为1,其前n项和为,是公比为正整数的等比数列,其首项为3,前n项和为. 若.(1)求,的通项公式;(2)求数列的前n项和.
判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.
已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.
数学家斯摩林根据莎士比亚的名剧《威尼斯商人》中的情节编了一道题:女主角鲍西娅对求婚者说:“这里有三只盒子:金盒、银盒和铅盒,每只盒子的铭牌上各写有一句话.三句话中,只有一句是真话.谁能猜中我的肖像放在哪一只盒子里,谁就能做我的丈夫.”盒子上的话如图所示,求婚者猜中了,你知道他是怎样猜中的吗?
设函数f(x)=lg的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围.
分别指出下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题的真假.(1)p:6<6.q:6=6;(2)p:梯形的对角线相等.q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点.q:不等式x2+x+2<0无解;(4)p:函数y=cosx是周期函数.q:函数y=cosx是奇函数.