(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线:=+>0交抛物线C:=2>0于A、B两点,M是线段AB的中点,过M作轴的垂线交C于点N.(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用表示|AB|;(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;(3)是否存在实数,使=0.若存在,求出的所有值;若不存在,说明理由.
已知函数在处取得极值,并且它的图象与直线在点( 1 , 0 ) 处相切, 求a , b , c的值。
计算下列定积分。 (1) (2)
用圆的下列性质类比球的有关性质,并判断其真假 (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦相等; (3)圆的周长是直径); (4)圆的面积.
用数学归纳法证明:
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?