(本小题满分13分)已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为.(1)求椭圆C的方程;(2)设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线上.
已知函数(其中,,)的部分图象如图所示.(1)求,,的值; (2)已知在函数图象上的三点的横坐标分别为,求的值.
数列对任意,满足.(1)求数列通项公式;(2)若,求的通项公式及前项和.
。 (1)若 (2)求 (3)求证:当时,恒成立。
已知公差不为零的等差数列的前4项和为10,且成等比数列.(Ⅰ)求通项公式;(Ⅱ)设,求数列的前项和.
在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上。(Ⅰ)求圆C的方程;(Ⅱ)若圆C被直线截得的弦长为,求的值。