数列对任意,满足.(1)求数列通项公式;(2)若,求的通项公式及前项和.
设函数,其中为常数. (1)当时,判断函数在定义域上的单调性; (2)若函数有极值点,求的取值范围及的极值点.
已知椭圆的离心率为,右焦点为,斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为. (1)求椭圆的方程; (2)求的面积.
在数列中,,且. 求,猜想的表达式,并加以证明.
如图,在四棱锥中,底面为直角梯形,,,底面,且,分别为的中点.求与平面所成的角.
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录了6个抽查数据,获得重量数据的茎叶图如图4. (1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定; (2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.