某市城调队就本地居民的月收入调查了10000人, 并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点, 不包括右端点, 如第一组表示收入在, 单位: 元).(Ⅰ)求随机抽取一位居民,估计该居民月收入在的概率,并估计这10000人的人均月收入;(Ⅱ)若将频率视为概率,从本地随机抽取3位居民(看作有放回的抽样),求月收入在上居民人数的数学期望.
已知函数. (1)求函数在区间上的最大值和最小值; (2)若,其中求的值.
已知函数(是自然对数的底数). (1)若曲线在处的切线也是抛物线的切线,求的值; (2)当时,是否存在,使曲线在点处的切线斜率与在上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.
如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、. (1)当时,求以为焦点,且过中点的椭圆的标准方程; (2)过点作直线交于点,记的外接圆为圆. ①求证:圆心在定直线上; ②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
数列的前项和为,且是和的等差中项,等差数列满足,. (1)求数列、的通项公式; (2)设,数列的前项和为,证明:.
如图,边长为2的正方形中,点是的中点,点是的中点,将△、△分别沿、折起,使、两点重合于点,连接,. (1)求证:;(2)求点到平面的距离.