若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)把圆C的极坐标方程化为直角坐标方程; (2)将直线向右平移h个单位,所得直线与圆C相切,求h.
如图,AE是圆O的切线,A是切线,于,割线EC交圆O于B,C两点. (1)证明:O,D,B,C四点共圆; (2)设,,求的大小.
已知. (1)求函数的最大值; (2)设,证明:有最大值,且.
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ. (1)求曲线Γ的方程; (2)当点P在第一象限,且时,求点M的坐标.
如图,在斜三棱柱中,O是AC的中点,平面,,. (1)求证:平面; (2)求二面角的余弦值.