若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知数列 a n 和 b n 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) ,其中 λ 为实数, n 为正整数。
(Ⅰ)证明:对任意的实数 λ ,数列 a n 不是等比数列;
(Ⅱ)设 S n 为数列 b n 的前 n 项和,是否存在实数 λ ,使得对任意正整数 n ,都有 S n > - 12 ?若存在,求 λ 的取值范围;若不存在,说明理由.
已知双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的两个焦点为 F : ( - 2 , 0 ) , F : ( 2 , 0 ) 点 P ( 3 , 7 ) 的曲线 C 上. (Ⅰ)求双曲线 C 的方程; (Ⅱ)记 O 为坐标原点,过点 Q ( 0 , 2 ) 的直线 l 与双曲线 C 相交于不同的两点 E , F ,若 △ O E F 的面积为 2 2 求直线 l 的方程
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
如图,在直三棱柱 A B C - A 1 B 1 C 1 中,平面 A 1 B C ⊥ 侧面 A 1 A B B 1 . (Ⅰ)求证: A B ⊥ B C .
(Ⅱ)若 A A 1 = A C = a ,直线 A C 与平面 A 1 B C 所成的角为 θ ,二面角 A 1 - B C - A 的大小为 φ ,求证: θ + φ = π 2 .
已知函数 f ( x ) = x 3 + m x 2 - m 2 x + 1 ( m 为常数,且 m > 0 )有极大值9. (Ⅰ)求 m 的值; (Ⅱ)若斜率为-5的直线是曲线 y = f ( x ) 的切线,求此直线方程.