若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).(1)求的极值;(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
如图,直线为圆的切线,切点为,直径,连接交于点. (1)证明:; (2)求证:.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点. (1)求证:△≌△; (2)若,求长.
如图,PA、PB是圆O的两条切线,A、B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且求证: (1);(2)∽
如图,AE是圆O的切线,A是切线,于,割线EC交圆O于B,C两点. (1)证明:O,D,B,C四点共圆; (2)设,,求的大小.