观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y) (分成两组)=x(x﹣y)+4(x﹣y) (直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc) (分成两组)=a2﹣(b﹣c)2 (直接运用公式)=(a+b﹣c)(a﹣b+c) (再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.( 2)x2﹣2xy+y2﹣9.
(本题共8分,每小题4分) (1)、如下图,△ABC内接于⊙O,且AB=AC,⊙O的弦AE交于BC于D. 求证:AB·AC=AD·AE (2)、如下图,△ABC内接于⊙O,且AB=AC,当弦AE的延长线与BC的延长线相交于点D时,上述结论是否还成立?若成立,请给予证明。若不成立,请说明理由。
(本题共8分)如图,抛物线y=-+5x+n经过点A(1,0),与y轴交于点B (1)、求抛物线的解析式; (2)、P是y轴上一点,且△PAB是以AB为腰的等腰三角形,求P点坐标。
(本题7分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长.(参考数据:=1.73)
在一个口袋中有4个完全相同的小球,把它们分别标上数字﹣1,0,1,2,随机的摸出一个小球记录数字然后放回,再随机的摸出一个小球记录数字.用树状图或列表法求下列事件的概率:(1)、两次都是正数的概率;(2)、两次的数字和等于0的概率.
(本题5分)解方程:+4y-1=0;