如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。CD是⊙O’的切线.AD⊥CD于点D,tan∠CAD=,抛物线过A、B、C三点。(1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判断抛物线的顶点E是否在直线CD上.并说明理由:(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在.请说明理由.
(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:①∠AEB的度数为 ___ ______; ②线段AD,BE之间的数量关系为 ___ ______. (2)拓展探究 如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D ,E在同一直线上,CM为△DCE中 DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分 ∠BAC. (1)求证:OC平分∠ACD; (2)求证:AB+CD=AC.
如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC. (1)求证:△ABE≌DCE; (2)当∠AEB=50°,求∠EBC的度数?
如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.
先化简,再求值:,其中x=3,y=1