(﹣2ab)(3a2﹣2ab﹣4b2)
某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出与的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。
如图,AB是⊙O的直径,弦CE⊥AB交AB于点D,点P在AB的延长线上, 连结OE、AC、BC,已知∠POE=2∠PCB.(1)求证:PC是⊙O的切线;(2)若BD=2OD,且PB=12,求⊙O的半径.
我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=时,求证:四边形ADCE是菱形.
某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。规定:每位考生先在三个笔试题(题签分别用代码表示)中抽取一个,再在三个上机题(题签分别用代码表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签。(1)用树状图或列表法表示出所有可能的结构;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“”的下表为“1”)均为奇数的概率。