设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1).(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;(2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x).(ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;(ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
(本小题满分12分)函数,其中为已知的正常数,且在区间[0,2]上有表达式. (1)求的值; (2)求在[-2,2]上的表达式,并写出函数在[-2,2]上的单调区间(不需证明); (3)求函数在[-2,2]上的最小值,并求出相应的自变量的值.
(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:=若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
(本小题满分12分)在中,、、分别为、、的对边, 已知,,三角形面积为. (1)求的大小; (2)求的值.
(本小题满分12分)已知为坐标原点,向量,点满足. (1)记函数,求函数的最小正周期; (2)若、、三点共线,求的值.
(本小题满分12分)记函数的定义域为集合,函数的定义域为集合. (1)求; (2)若,且,求实数的取值范围.