已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
已知函数,当x = -1时取得极大值7,当x = 3时 取得极小值; (1)求的值; (2)求的极小值。
已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B. (1)求椭圆的方程; (2)求的取值范围。
.(本小题满分12分). 如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列. (1)求该弦椭圆的方程; (2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本小题满分12分) 已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线相交所得线段中点的横坐标为,求这个双曲线方程。
(本小题满分12分) 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2," AA="2," E、E、F分别是棱AD、AA、AB的中点。 (1)证明:直线EE//平面FCC; (2)求二面角B-FC-C的余弦值。