(本小题满分12分)已知函数,.(Ⅰ)时,证明:;(Ⅱ),若,求a的取值范围.
(本小题满分12分)已知数列的首项为,前项和为,且对任意的, 当时,总是与的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前项和,,求.
(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问 题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、 四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。 (Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;
(本小题满分10分)已知向量,。 (Ⅰ)若,求的值; (Ⅱ)设,求的取值范围.
已知函数. (Ⅰ)若函数在区间(其中)上存在极值,求实数的取值范围; (Ⅱ)如果当时,不等式恒成立,求实数的取值范围; (Ⅲ)求证:.
已知椭圆的离心率为, 直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程; (Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.