设非常数数列{an}满足an+2=,n∈N*,其中常数α,β均为非零实数,且α+β≠0.(1)证明:数列{an}为等差数列的充要条件是α+2β=0;(2)已知α=1,β=, a1=1,a2=,求证:数列{| an+1-an-1|} (n∈N*,n≥2)与数列{n+} (n∈N*)中没有相同数值的项.
求与圆外切且与直线相切于点的圆的方程.
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据: ⑴求这个组合体的表面积; ⑵若组合体的底部几何体记为ABCD-A1B1C1D1,如图,其中A1B1BA为正方形. ①求证:A1B⊥平面AB1C1D; ②若P为棱A1B1上一点,求AP+PC1的最小值.
求经过直线与圆的交点,且经过点的圆的方程.
如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.⑴证明:平面SBD⊥平面SAC;⑵证明:直线MN//平面SBC.
已知椭圆>b>的离心率为且椭圆上一点到两个焦点的距离之和为.斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m). (1)求椭圆的标准方程; (2)求m的取值范围. (3)试用m表示△MPQ的面积S,并求面积S的最大值.