已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.
二次函数f(x)=px2+qx+r中实数p、q、r满足=0,其中m>0,求证: (1)pf()<0; (2)方程f(x)=0在(0,1)内恒有解.
如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围.
已知实数t满足关系式(a>0且a≠1) (1)令t=ax,求y=f(x)的表达式; (2)若x∈(0,2时,y有最小值8,求a和x的值.
如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围。