某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
已知,数列是首项为,公比也为的等比数列,令 (Ⅰ)若,求数列的前项和; (Ⅱ)当数列中的每一项总小于它后面的项时,求的取值范围.
已知向量,, (Ⅰ)若,求的值; (Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.
关于的不等式. (Ⅰ)当时,解此不等式; (Ⅱ)设函数,当为何值时,恒成立?
在平面直角坐标系xoy中,曲线C1的参数方程为 (,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,)对应的参数j=,曲线C2过点D(1,). (I)求曲线C1,C2的直角坐标方程; (II)若点A(r1,q),B(r2,q+)在曲线C1上,求的值.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F. (I)求证:DE是⊙O的切线; (II)若=,求的值.