某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
某公司一年购某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x为多少吨?
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求的最小值为。
求证ab+bc+cd+da≤a2+b2+c2+d2并说出等号成立的条件.
表示下列不等关系 (1)a是正数(2)a+b是非负数 (3)a小于3,但不小于-1(4)a与b的差的绝对值不大于5。
在△ABC中,已知,求△ABC的面积。