某市举行的一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:(Ⅰ)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少?(Ⅱ)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.
已知动圆M经过点A(3,0),且与直线l:x=﹣3相切,求动圆圆心M的轨迹方程.
根据下列条件写出抛物线的标准方程: (1)准线方程是y=3; (2)过点P(﹣2,4); (3)焦点到准线的距离为.
点A、B分别是椭圆+=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF. (1)求P点的坐标; (2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
已知过点A(﹣1,1)的直线与椭圆=1交于点B、C,当直线l绕点A(﹣1,1)旋转时,求弦BC中点M的轨迹方程.
已知直线l:y=kx+1与椭圆+y2=1交于M、N两点,且|MN|=.求直线l的方程.