某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式.(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/百千克,时间单位:天)
(本小题满分12分)已知函数,其中.(1)若函数在区间内单调递增,求的取值范围;(2)求函数在区间上的最小值;(3)求证:对于任意的,且时,都有成立.
如图,已知椭圆()经过点,离心率,直线的方程为.(1)求椭圆的标准方程;(2)是经过椭圆右焦点的任一弦(不经过点),设直线与相交于点,记,,的斜率分别为,,,问:是否存在常数,使得?若存在,求出的值;若不存在,说明理由.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若为棱的中点,求异面直线与所成角的余弦值;(3)若二面角大小为,求的长.
在一个盒子中,放有大小相同的红、白、黄三个小球,从中任意摸出一球,若是红球记分,白球记分,黄球记分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为,,设为坐标原点,点的坐标为,记.(1)求随机变量的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
中,角、、所对的边为、、,且.(1)求角;(2)若,求的周长的最大值.