(本小题满分12分)如图,直三棱柱中,,,、分别为和上的点,且.(1)求证:当时,;(2)当为何值时,三棱锥的体积最小,并求出最小体积.
请你设计一个包装盒,如图所示,四边形ABCD是边长为60的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合与图中的点P,正好形成一个正四棱柱形状的包装盒。E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设。 (1)某广告商要求包装盒的侧面积S最大,试问应取何值? (2)某厂商要求包装盒的容积V最大,试问应取何值?并求出此时包装盒的高与底面边长的比值。
已知双曲线的焦点为,且离心率为2; (Ⅰ)求双曲线的标准方程;(Ⅱ)若经过点的直线交双曲线于两点,且为线段的中点,求直线的方程。
. (本题满分13分) 已知函数 (1)求的单调递减区间; (2)若在区间上的最大值为20,求它在该区间上的最小值。
、(本题15分)已知函数,且对于任意实数,恒有F(x)=F(-x)。(1)求函数的解析式; (2)已知函数在区间上单调,求实数的取值范围; (3)函数有几个零点?
(本小题满分15分)已知. (1)求函数的图像在处的切线方程; (2)设实数,求函数在上的最大值; (3)证明对一切,都有成立。