某航空公司经营A、B、C、D四个城市之间的客运业务. 若机票价格y(元)是两城市间的距离x(千米)的一次函数. 今年“五、一”期间部分机票价格如下表所示:(1)求该公司机票价格y(元)与距离x(千米)的函数关系式;(2)利用(1)中的关系式将表格填完整;(3)判断A、B、C、D这四个城市中,哪三个城市在同一条直线上?请说明理由;(4)若航空公司准备从旅游旺季的7月开始增开从B市直接飞到D市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元?
已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF. 求证:(1)△ABC≌△DEF (2)BE=CF.
如图,点C、D在△ABE的边BE上,且AB=AE,AC=AD,求证: BC=DE。
已知关于x的一元二次方程x2+(m+3)x+m+1=0. (1)求证:无论m取何值,原方程总有两个不相等的实数根; (2)若x1、x2是原方程的两根,且|x1-x2|=2,求m的值和此时方程的两根.
某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000 元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元. (1)商家一次购买这种产品多少件时,销售单价恰好为2600 元? (2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围. (3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元. (1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元? (2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?