如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连接AM、CM.其中BN=BM,∠MBN=60°,连接EN(1)证明:△ABM≌△EBN(2)当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.
每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°, AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位)
先化简,再从−2,0,1,2中选择一个合适的数代入,求出这个代数式的值.
计算:解不等式组
已知:直线y=(为正整数)与两坐标轴围成的三角形面积为, 则▲.
某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD垂直平分BC,AD=BC=40cm,则圆柱形饮水桶的底面半径的最大值是____▲ _____cm.