已知直线y1=x+m与x轴、 y轴分别交于点A、B,与双曲线(x<0)分别交于点C、D,且C点的坐标为(-1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标; (3)在坐标轴上找一点M,使得以M、C、D为顶点的三角形是直角三角形,请直接写出M点坐标.
先化简,其中x满足x2﹣5x﹣6=0.
(1)计算:()﹣1﹣4sin60°++(3﹣π)0.(2)求不等式组的整数解.
如图1,在平面直角坐标系中,正方形OABC的顶点A和C分别在x轴和y轴正半轴上,点B坐标为(3,3),抛物线y=﹣x2+bx+c过点A、C,交x轴负半轴于点D,与BC边的另一个交点为E,抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的函数关系式;(2)点P在直线MN上,求当PE+PA的值最小时点P的坐标;(3)如图2,探索在x轴是否存在一点F,使∠CFO=∠CDO﹣∠CAO?若存在,求点F的坐标;不存在,说明理由;(4)将抛物线沿y轴方向平移m个单位后,顶点为Q,若QO平分∠CQN,求点Q的坐标.
如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交坐标轴于点A和B,点M(a,0)在x轴正半轴上,以M为圆心,MO长为半径画⊙M.(1)当点M在线段OA上时①若BM平分∠OBA(如图1),求证:直线AB与⊙M相切;②若⊙M于直线AB相交于点C、D(如图2),试用含a的代数式表示CD2;(2)若⊙M于直线AB相交于点C、D,且∠CMD=120°,求a的值.
如图,已知A、B两点的坐标分别为A(0,2)B(﹣2,0),直线AB与反比例函数y=的图象交于点C和点D(1,a)(1)求直线AB和反比例函数的函数关系式;(2)求∠ACO的度数;(3)将△OBC绕点O顺时针旋转α角(0°<α<90°),得到△OB1C1,当α为多少度时OC1⊥AB,并求此时线段AB1的长.