(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(Ⅰ)求这箱产品被用户接收的概率;(Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)
已知向量,设函数 (I)求的解析式,并求最小正周期; (II)若函数的图像是由函数的图像向右平移个单位得到的,求的最大值及使取得最大值时的值.
已知函数的定义域为,且对于任意,存在正实数L,使得均成立。 (1)若,求正实数L的取值范围; (2)当时,正项数列{}满足 ①求证:; ②如果令,求证:.
已知函数 (1)当时,求曲线在点处的切线方程; (2)当时,若在区间上的最小值为-2,求实数的取值范围; (3)若对任意,且恒成立,求实数的取值范围.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。 (1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明; (2)求平面BCE与平面ACD所成锐二面角的大小;