如图,某商业中心O有通往正东方向和北偏东30º方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。 (1)当AB沿正北方向时,试求商业中心到A,B两处的距离和; (2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
已知四棱锥P-ABCD,底面是边长为1的正方形,侧棱PC长为2,且PC⊥底面ABCD,E是侧棱PC上的动点。 (Ⅰ)不论点E在何位置,是否都有BD⊥AE?证明你的结论; (Ⅱ)求点C到平面PDB的距离; (Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°, M为AP的中点. (Ⅰ)求证:DM∥平面PCB; (Ⅱ)求直线AD与PB所成角; (Ⅲ)求三棱锥P-MBD的体积.
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)证明PA//平面BDE; (2)求二面角B—DE—C的平面角的余弦值; (3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
如右放置在水平面上的组合体由直三棱柱与正三棱锥组成,其中,.它的正视图、俯视图、从左向右的侧视图的面积分别为,,. (Ⅰ)求直线与平面所成角的正弦; (Ⅱ)在线段上是否存在点,使平面.若存在,确定点的位置;若不存在,说明理由.
图①是一个正方体的表面展开图,MN和PQ是两条面对角线,请在图(2)的正方体中将MN,PQ画出来,并就这个正方体解答下列各题: (1)求MN和PQ所成角的大小; (2)求四面体M—NPQ的体积与正方体的体积之比; (3)求二面角M—NQ—P的大小。