如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。(1)求椭圆的离心率;(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
求经过点A(4,-1),并且与圆相切于点M(1,2)的圆的方程.
如图,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为的菱形,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.若G为AD的中点,⑴求证:BG⊥平面PAD;⑵求PB与面ABCD所成角.
如图,在三棱锥P—ABC中,G、H分别为PB、PC的中点,且△ABC为等腰直角三角形,∠B=90°.⑴求证:GH∥平面ABC;⑵求异面直线GH与AB所成的角.
分别写出下列命题的逆命题,否命题与逆否命题,并判断其真假:原命题:已知,若,则.
设为奇函数,为常数.(Ⅰ)求的值; (Ⅱ)判断在区间(1,+∞)的单调性,并说明理由;(Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.