(本题满分12分)为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。
在△ABC中,已知cos A=.(1)求sin2-cos(B+C)的值;(2)若△ABC的面积为4,AB=2,求BC的长.
若不等式的解集是,(1) 求的值;(2) 求不等式的解集.
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.(1)求f (x)在[-1, 1]上的解析式; (2)证明f (x)在(—1, 0)上时减函数; (3)当λ取何值时, 不等式f (x)>λ在R上有解?
已知函数的图像在点处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)设是[)上的增函数, 求实数的最大值.
设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.