(本小题满分14分) 如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (Ⅰ) 证明:BC1//平面ACD1; (Ⅱ)证明:A1D⊥D1E; (Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
如果方程表示一个圆,(1)求的取值范围;(2)当m=0时的圆与直线相交,求直线的倾斜角的取值范围.
设集合A=<,集合B=>,若,求实数的取值范围.
已知两条直线与的交点为P,直线的方程为:.(1)求过点P且与平行的直线方程;(2)求过点P且与垂直的直线方程.
定义在R上的单调函数f(x),存在实数,使得对于任意,都有:恒成立.(Ⅰ)求的值;(Ⅱ)若,且对任意正整数n,有 ,又数列满足 ,求的通项公式.
函数f(x) 的定义域为R,且对任意x,y∈R 都有f(x+y)=f(x)+f(y),又当x>0 时,f(x)<0,且f(1)=-2.(Ⅰ)求证:f(x) 既是奇函数又是R上的减函数;(Ⅱ)求f(x)在[-3,3]的最大值和最小值.