(本题满分12分)数列的前项的和为,对于任意的自然数,(Ⅰ)求证:数列是等差数列,并求通项公式(Ⅱ)设,求和
已知曲线的参数方程为是参数,是曲线与轴正半轴的交点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点与曲线只有一个公共点的直线的极坐标方程.
如图,四边形的外接圆为⊙,是⊙的切线,的延长线与相交于点,. 求证:.
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数. (Ⅰ)求的取值范围; (Ⅱ)当取何值时,的面积最大?最大面积等于多少?
已知. (Ⅰ)求的单调递增区间; (Ⅱ)若函数在上只有一个零点,求实数的取值范围.
如图,在长方体中,,,是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的正弦值.