(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于项点的任一点,直线和与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线、的斜率分别为、,证明:;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
规定,其中x∈R,m是正整数,且,这是组合数(n、m是正整数,且m≤n)的一种推广. (1) 求的值; (2) 设x>0,当x为何值时,取得最小值? (3) 组合数的两个性质; ①. ②. 是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
设f(x)=(1+x)m+(1+x)n(m、n),若其展开式中,关于x的一次项系数为11,试问:m、n取何值时,f(x)的展开式中含x2项的系数取最小值,并求出这个最小值.
某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。如果人口年增加率为1%,那么耕地平均每年至多只能减少多少亩(精确到1亩)?
是否存在等差数列,使对任意都成立?若存在,求出数列的通项公式;若不存在,请说明理由.
已知的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.