如图,AD为⊙O的直径,作⊙O的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:黄皓:1. 作OD的垂直平分线,交⊙O于B,C两点,2. 连结AB,AC,△ABC即为所求的三角形. 李明:1. 以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点, 2. 连结AB,BC,CA,△ABC即为所求的三角形.已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC是等边三角形.
(·湖南益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(,0),B(,0)(0<<),与y轴交于点P,其图像顶点为点M,点O为坐标原点。 (1)当=c=2,a=时,求与b的值; (2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论; (3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
(·湖南常德)如图,曲线抛物线的一部分,且表达式为:曲线与曲线关于直线对称。(1)求A、B、C三点的坐标和曲线的表达式;(2)过点D作轴交曲线于点D,连接AD,在曲线上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。(3)设直线CM与轴交于点N,试问在线段MN下方的曲线上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
(·湖北孝感)在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.(1)求抛物线的解析式;(2)在上方的抛物线上有一动点.①如图1,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;②如图2,过点,的直线交于点,若,求的值.
(·湖北孝感)如图,四边形是矩形纸片,.对折矩形纸片,使与 重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点. 有如下结论: ; ②; ③; ④△是等边三角形; ⑤为线段上一动点,是的中点,则的最小值是. 其中正确结论的序号是 .