(·湖南长沙)若关于x的二次函数y=a+bx+c(a>0,c>0,a、b、c是常数)与x轴交于两个不同的点A(,0),B(,0)(0<<),与y轴交于点P,其图像顶点为点M,点O为坐标原点。 (1)当=c=2,a=时,求与b的值; (2)当=2c时,试问△ABM能否为等边三角形?判断并证明你的结论; (3)当=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值。
已知:如图,△ABC中,AB=AC,∠A=120°.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.
已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE=CD.求证:BD=DE.
如图,∠OBC=∠OCB,∠AOB=∠AOC,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.
已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.
将一幅三角板Rt△ABC和Rt△DEF按如图1摆放,点E, A, D, B在一条直线上,且D是AB的中点,将Rt△DEF绕点D顺时针方向旋转(0°<<90°)角,在旋转过程中,直线DE与AC相交于点M,直线DF与BC相交于点N,分别过点M, N作直线AB的垂线,垂足分别为G, H.(1)当=30°时(如图2),求证:AG=DH;(2)当=60°时(如图3),(1)中的结论是否仍成立?请写出你的结论,并说明理由.