(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
已知函数.(1)判断的单调性;(2)求函数的零点的个数;(3)令,若函数在(0,)内有极值,求实数的取值范围.
(1)在中,分别是角的对边,其中是边上的高,请同学们利用所学知识给出这个不等式:≥的证明.(2)在中,是边上的高,已知,并且该三角形的周长是;①求证:;②求此三角形面积的最大值.
某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其它费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其它费用为每小时1250元.(1)请把全程运输成本(元)表示为速度(海里/小时)的函数,并指明定义域;(2)为使全程运输成本最小,轮船应以多大速度行驶?
已知函数,(1)求函数的对称轴所在直线的方程;(2)求函数单调递增区间.
已知函数,(1)求函数的极值;(2)若对,都有≥恒成立,求出的范围;(3),有≥成立,求出的范围;