(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率;(2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.
四棱锥P—ABCD中,PA⊥面ABCD,PA=AB=BC=2,E为PA中点,过E作平行于底面的面EFGH分别与另外三条侧棱交于F,G,H,已知底面ABCD为直角梯形,AD//BC,AB⊥AD,∠BCD=135° (1)求异面直线AF,BG所成的角的大小; (2)设面APB与面CPD所成的锐二面角的大小为θ,求cosθ.
如图,已知长方体直线与平面所成的角为,垂直于,为的中点. (1)求异面直线与所成的角; (2)求平面与平面所成的二面角; (3)求点到平面的距离.
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点. (1)求证:PC⊥BD; (2)求证:AF//平面PEC; (3)求二面角P—EC—D的大小.
如图,在边长为的正方形中,点是的中点,点是的中点,将△AED,△DCF分别沿折起,使两点重合于. (1) 求证:; (2) 求二面角的正切值.
如图,在△中,,,为的中点,沿将△折起到△的位置,使得直线与平面成角。 (1)若点到直线的距离为,求二面角的大小; (2)若,求边的长。