(本小题满分13分)袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和.(Ⅰ)求的概率分布;(Ⅱ)求的数学期望与方差.
设两向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.(1)求证:(a-b)⊥c;(2)若|ka+b+c|>1(k∈R),求k的取值范围.
已知a=(3,4),b=(4,3),求x、y的值使(xa+yb)⊥a,且|xa+yb|=1.
已知向量a=,b=(sinx,cos2x),x∈R,设函数f(x)=a·b.(1)求f(x)的最小正周期.(2)求f(x)在上的最大值和最小值.
已知向量a=(cosλθ,cos(10-λ)θ),b=(sin(10-λ)θ,sinλθ),λ、θ∈R.(1)求|a|2+|b|2的值;(2)若a⊥b,求θ;(3)若θ=,求证:a∥b.