(本题满分14分,其中第(1)题4分,第(2)题的第、小题分别为4分、6分)如图1,在△ABC中,已知AB=15,cosB=,tanC=.点D为边BC上的动点(点D不与B、C重合),以D为圆心,BD为半径的⊙D交边AB于点E.(1)设BD=x,AE=y,求与的函数关系式,并写出函数定域义;(2)如图2,点F为边AC上的动点,且满足BD=CF,联结DF.①当△ABC和△FDC相似时,求⊙D的半径;② 当⊙D与以点F为圆心,FC为半径⊙F外切时,求⊙D的半径.
解不等式组:
计算:+(-1)2013-(-2)-2.
如图,抛物线的顶点为H,与轴交于A、B两点(B点在A点右侧),点H、B关于直线:对称,过点B作直线BK∥AH交直线于K点. (1)求A、B两点坐标,并证明点A在直线上; (2)求此抛物线的解析式; (3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,求出NK的长.
如图,△ABC内接于⊙O, AD是⊙O直径, E是CB延长线上一点, 且ÐBAE=ÐC. (1)求证:直线AE是⊙O的切线; (2)若EB="AB" , , AE=24,求EB的长及⊙O的半径。
如图,在四边形ABCD中,ÐADB=ÐCBD=90°,BE//CD交AD于E , 且EA=EB.若AB=,DB="4," 求四边形ABCD的面积.