已知曲线C1的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于A,B两点(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;(II)求弦AB的长度.
(本小题共13分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC,E,F分别为棱AB,PC的中点.(I)求证:PE⊥BC;(II)求证:EF//平面PAD.
(本小题共13分)已知函数(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;(II)当a=2时,在的条件下,求的值.
(本小题共14分)已知数列满足,点在直线上.(I)求数列的通项公式;(II)若数列满足求的值;(III)对于(II)中的数列,求证:
(本小题共14分)已知椭圆的离心率为(I)若原点到直线的距离为求椭圆的方程;(II)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.(i)当,求b的值;(ii)对于椭圆上任一点M,若,求实数满足的关系式.
(本小题共13分)已知函数(I)若x=1为的极值点,求a的值;(II)若的图象在点(1,)处的切线方程为,(i)求在区间[-2,4]上的最大值;(ii)求函数的单调区间.