已知数列{an}满足,,.(1)求证:数列为等比数列;(2)是否存在互不相等的正整数、、,使、、成等差数列,且、、 成等比数列?如果存在,求出所有符合条件的、、;如果不存在,请说明理由.
一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,求这个平面图形的面积。
已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分的比分λ1、λ2.求证:λ1+λ2=0
(本小题满分12分) 如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2. (1)求证:B1B//平面D1AC; (2)求二面角B1—AD1—C的余弦值.
(本小题满分12分) 设函数. (1)写出函数的最小正周期及单调递减区间; (2)当时,函数的最大值与最小值的和为,求的图象、轴的正半轴及x轴的正半轴三者围成图形的面积.
若直线与连接两点的线段有交点,求实数的取值范围.